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Growth rate exponents of Richtmyer-Meshkov mixing layers
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Abstract
The Richtmyer-Meshkov mixing layer isinitiated by the passing of a shock over an
interface between fluid of differing densities. The energy deposited during the shock
passage undergoes a rel axation process during which the fluctuational energy in the flow
field decays and the spatial gradients of the flow field decreasein time. This late stage of
Richtmyer-Meshkov mixing layersis studied from the viewpoint of self-similarity.
Analogies with weakly anisotropic turbulence suggest that both the bubble-side and
spike-side widths of the mixing layer should evolve as power-laws in time, with the same
power-law exponents and virtual time origin for both sides. The analogy also bounds the
power-law exponent between 2/7 and 2/5. It isthen shown that the assumption of
identical power-law exponents for bubbles and spikes yields that are in good agreement
with experiment at modest density ratios.

PACS numbers: 47.27. Eq, 47.27. Gs, 47.40 Nm, 52.57.Fg



I. INTRODUCTION

The Richtmyer-Meshkov (RM) instability occurs when a perturbed interface between two
fluids of differing densities is impulsively accelerated. The impulsive acceleration is typically
produced by a shock wave passing across the interface, but may be induced by other means.
The RM instability is of significant importance in problems of inertial confinement fusion as
well as in stellar evolution. The RM instability was studied analytically by Richtmyer[1] and
experimentally by Meshkov [2]. The early-time behavior is amenable to linear analysis[1, 3].
The evolution in the case of a single Fourier-mode perturbation is also relatively well un-
derstood. However, during the late stages of the evolution of the RM mixing layer initiated
from a multi-modal initial condition, the mixing layer may become highly turbulent, during
which time a statistical description becomes more appropriate. The typical statistical char-
acterization is of the width of the mixing layer as a function of time, and more specifically
the “bubble” (light fluid penetrating heavier fluid) and “spike” (heavy fluid penetrating
lighter fluid) growth rates.

The usual scaling assumptions regarding the bubble- and spike-growth rates are based on
empirical observation. These assumptions are that the bubble-side and spike-side widths (hp
and hg, respectively) grow as power-laws in time, with the bubble-side having a somewhat

smaller exponent, #g than the spike-side fs;
hB75(t) ~ t93,579B < Hs. (11)

Recently, Zhou[4] has presented an analysis that draws a connection between the expo-
nents and the growth of the length-scale in a decaying, weakly anisotropic turbulence. The
physical picture presented by Zhou is one of an initially quiescent flow field subject to an
impulsive injection of energy (perhaps at all scales) and then subsequently allowed to freely
decay. Although there are undoubtedly significant corrections due to strong anisotropy and
lack of an equilibration of the statistical quantities at early time, the analogy between the
RM induced flow and decaying isotropic turbulence becomes better and better as the shock-
induced anisotropy decays toward isotropy after the shock passes. As a result, one can
anticipate that the analogy between isotropic decay and RM mixing layer evolution will be
acceptable at a late time (long after the shock passage). Indeed, it is at late time that one
expects that mixing zone width of the RM induced flow will grow as a power-law in time.

The fact that the mixing zone width is the largest observable feature of the flow suggest the



importance of a dominant large length scale, which, in turn, is associated with the low-wave
number power-law of the energy spectrum. Such a viewpoint is very similar to the analytical
and experimental findings in isotropic turbulence beginning with Batchelor [5], Saffman[6],

and productively exploited by others, e.g., Comte-Bellot and Corrsin[7].

II. SELF-SIMILAR SCALING ANALYSIS

The late-time evolution of the RM mixing layer will be studied using the analogy with
isotropic turbulence to generate a a new and different view. This analogy indicates that
both the bubble- and spike- side widths of the mixing layer should evolve as power-laws
in time, with the same power-law exponent for both sides. This is a direct outcome from
turbulence theory which implies that the correlation length between fluid in the spikes and
bubble at large separation distances should be the same. Therefore, our result provides
an insight that may explain the observed late-time behaviors of these layers and suggests
that the asymmetry of the motion of bubbles and spikes should be instead attributed to the
virtual time origins and coefficients for each side. In the following sections the self-similar
decay of isotropic turbulence will be reviewed, the qualitative features of the analogy to
RM decay will be developed, and the consequences for mixing layer growth rates will be

determined.

A. Review of self-similarity of isotropic turbulence

A review of the nature and mathematical basis of self-similarity for isotropic turbulence
will be reviewed with the goal of establishing the necessary scaling arguments and introduc-
ing the concepts used in the later analysis.

The decay of isotropic turbulence has been extensively studied over the past 70 years,
beginning with the seminal work of Kéarman and Howarth[8] in 1938. Various theoretical
descriptions, dimensional analyses, computational simulations and experiments have been
conducted over the years. The physical picture that has arisen is described in detail by
Lesieur[9] and Lesieur and Schertzer[10]. Initially random isotropic velocity fluctuations
rapidly “build-up” an inertial subrange. The inertial subrange extends to increasingly large

wavenumbers as time goes on until eventually the viscous processes at high wavenumbers



begin to destroy the energy at the high wavenumbers. Prior to the point in time when the
inertial subrange extends to the viscously damped wavenumbers, the total turbulent kinetic
energy is nearly conserved. After establishment of the inertial subrange the turbulence tends
towards the high-Reynolds number isotropic decay regime. At very late times, the effects
of viscosity will eventually affect the larger scales of motion leading to Batchelor’s [5] so-
called final stage of decay in which the dynamical interactions in the turbulent flow become
dominated by the viscous damping.

Such an evolutionary picture of the isotropic decay was studied by Clark and Zemach
using spectral closure models and a simple group-theoretic approach [11, 12]. Their approach
was based on a mathematical definition of self-similarity—self-similar solutions are those that
are invariant under an appropriate symmetry group. For the case of decaying isotropic
turbulence turbulence the appropriate scaling group consisted of a simple time-scaling with
time-translation;

t'=7(t +to) — to, (2.1)

and to a simple scaling of length;

L= \L. (2.2)

The existence of a virtual time origin, ¢y is a statement of time-translation invariance—the
behavior of the system should be independent of the absolute time of the “clock” used to
measure the system. It will be shown later that ¢{; = 0 is an admissible solution. Clark and
Zemach found that the same group was also appropriate for decaying weakly anisotropic
turbulence—the fundamental scaling properties of the deviatoric parts of the spectrum being
identical to those of the trace.

This two-parameter group was restricted to a simple power-law subgroup;
A =1l (2.3)

This subgroup (7, 6) implies that changes in lengths are related changes in time by a power
law. Using this subgroup in addition to the above scaling, the generally accepted power-law
behaviors for decaying isotropic turbulence were derived. The simple group-theoretic argu-
ment also showed that the return to isotropy of an initially anisotropic flow was incomplete-a
residual amount of anistropy persists at all times. This conclusion was also supported by

computations with a spectral closure model[11].



Clark and Zemach [12] exploited the subgroup given by eqn. 2.3 to determine the form

of the self-similar energy spectrum,
Bk, 1) = KL (kL) 2.4)

where K (1) is the turbulent kinetic energy, L(t) is a characteristic length-scale of the energy
containing range of the turbulence and £ is the wavenumber. This form is identical to the
form postulated by de Karman and Howarth [8]. The analysis also yielded the self-similar

form of the length-scale which was found to be

6
t+1
L(t) = Lo l + 0] , (2.5)
o]
and the form for the turbulent kinetic energy was found to be
t+to] ™"
K(t) = K l + 0] , (2.6)
o]
where
n=2-—20. (2.7)

Self-similarity of a physical law implies not only that the scaled functions of the unscaled
arguments are equal to the unscaled functions of the scaled arguments, but also that physical
parameters (e.g., viscosity, acceleration et cetera) scale onto themselves, that is, that the
relevant dimensional parameters remain invariant. Thus the parameter § may be determined
by requiring the physical parameters of the problem be invariant. For example, for the RT
mixing layer, Clark and Zhou [13] required the acceleration, g (dimensions [Length/Time?])
be made invariant;

A _
g =g9g5=g7"" (2.8)
T

From this we see that § — 2 = 0 or § = 2 makes ¢ invariant and gives a length-scale (for

example the mixing layer width) that grows as ¢?. For the KH mixing layer the operative

physical parameter is the velocity difference, Uax;

A _
U’A:UA;:gTe ' (2.9)
and Uy is invariant for # = 1, giving a mixing layer width that grows as ¢'.
For isotropic turbulence, Clark and Zemach considered two physical effects—viscosity and

the observed persistent large-scale eddies. The invariance of viscosity requires § = 1/2



leading to an energy decay law of t~' and length-scale growth of ¢/

. The consequences
of this scaling group on the“permanence of large eddies” requires particular values of the
time-exponents of the functions (related to the parameter #). Permanence of large-eddies
(or equivalently, invariance of the infrared spectrum of the energy) establishes a connection

between € and the low-wavenumber power-law behavior of the spectrum. For permanent

large eddies one has,

lim E(k,t) = egk™, (2.10)

k—0

where e has dimensions of [Length®™ /Time?] and invariance of ey requires that

FB+m)I=200 — ¢ (2.11)
which has a solution for & of
2
0= —, (2.12)
m + 3
and
1
n=oltt 2 (2.13)
m + 3

Note that full self-similarity with viscosity (# = 1/2) and including permanence of large
eddies, eqn. 2.12, restricts one to the choice of m = 1, consistent with the decay laws for
both the large and small scales. Speziale and Bernard [17] studied the Kdrman-Howarth
equation in an effort to deduce the fully self-similar form of decaying isotropic turbulence
with viscosity. They concluded that for this case that the energy decay exponent was n = 1.
Ristorcelli has shown that this is consistent with constant skewness and palinstrophy in the
dissipation equation [27]. Clark and Zemach[12] concurred that such a solution, if it exists,
is fully self-similar and point out that this corresponds to a low wavenumber exponent of
m = 1. A value of m < 2 corresponds to a modal energy spectrum that is singular at the

origin. For isotropic, non-helical turbulence, the modal spectral tensor becomes

E(k,t kik;
lim Eij(k,t) = |lim ( ’ ) (52] — ])
k—0

k=0 4rk? k2

E, . ik
= z(gij_k_;), (2.14)

Mathematically this corresponds to an ensemble of realizations wherein some of the realiza-

tions have an infinite translational velocity, but where the average velocity for the ensemble



is zero[20]. This does not seem physically reasonable, and we will only consider the cases of
m > 2.

The low-wavenumber behavior of a turbulent flow is related to the evolution of the largest
scales in the flow field (i.e., velocity correlations at large physical distances). An early work
dealing with the low-wavenumber behavior of turbulence is by Batchelor [5], in which a
prediction for the decay rate for isotropic turbulence was made. He assumed (implicitly)
that m = 4 for the isotropic decay. This circumstance corresponds to constancy of the
Loitsianski integral [5, 9, 18] and “permanence of big eddies.” As pointed out by Lesieur
and Schertzer, the case of m > 4 is modified by backscatter to m = 4. The case of
m = 4 corresponds to a marginal self-similarity with the kinetic energy decay exponent
n ~ 1.38 rather than n = 10/7. Lesieur([9], page 194) states that for m < 4, the initial
low-wavenumber spectrum of unforced turbulence remains the same. From the perspective
of our paper, this implies that the turbulent growth will depend upon the initial conditions
and there is one correct value for # that is determined by the infrared scaling of the initial
conditions. It must be noted that recently Eyink and Thomson[19] used the eddy-damped
quasi-normal Markovian (EDQNM) model to conclude that there is a breakdown of absolute
self-similarity for m >= 3.45, suggesting a modification of relationship between m and n
and 0. Corrections for backscatter where discussed by Clark and Zemach [12]. However,
the difference between the fully self-similar decay-rates and the decay-rates modified by
backscatter is small and need not be discussed further. We will restrict our attention to
m < 4.

Saffman[6] showed that for a homogeneous field generated by an impulsive force, m = 2
and that the large-scale structure is an invariant of the flow field (i.e., the “permanence of
big eddies”). As pointed out by Saffman, the case of m = 2 corresponds to an equipartition
of energy at the large-scales, implying that the turbulence (i.e., some realizations in the
ensemble of realizations) must possess a net momentum.

The role of the virtual time-origin, ¢y and it’s determination from experimental data were
studied by Mohamed and LaRue [16]. Calculations using spectral models indicate that the
initial phase of isotropic turbulence involves the establishment of a cascade, and until this is
well-established the turbulence is not self-similar. Thus the theories and models demonstrate

that tg is related to the time required to establish self-similarity after the initial excitation.



B. Self-Similarity and Richtmyer-Meshkov induced flow

In this section the consequences of self-similarity for RM mixing layers will be determined
using a simplified Lie-group analysis similar to the apporach used by Clark and Zemach
[12]. After the form of the self-similarity is determined, an anology with isotropic decay
will be assumed to relate the one-parameter subgroup to the infrared scaling of the mixing
layer. While it is not generally believed that RM layers develop into self-similar mixing
layers (particularly at large density ratios), one may still usefully explore the concept of
self-similarity to attempt to deduce gross scaling behaviors.

The physical description of the RM mixing layer recently proposed by Zhou [4] is remark-
ably reminiscent of this view of isotropic turbulence with permanent large-scale structures,
with the early deposition of energy being due to the initial impulse which drives the mix-
ing layer. After a finite period of time, the flow relaxes to a anisotropic, inhomogeneous
state. For this study we will consider late times, long after the shock has passed and we will
presume that the flow field is self-similar. Implicit in this assumption is that the persistent
anisotropy of the system is weak, consistent with the assumptions of Clark and Zemach [11].

Consider the self-similar growth of the width W (¢) of a Richtmyer-Meshkov mixing layer.
The same scalings and subgroup (eq. 2.1-2.3) employed by Clark and Zemach [12] and Clark
and Zhou [13]. W (t) has dimensions of length and it’s single argument has dimensions of
time. Self-similarity requires that the scaled function W is equal to the unscaled function

of the scaled argumet, ¢;
AW (t) = W (7(t + to) — L)) (2.15)
The power-law subgroup, eqn. 2.3, yields
W () = W (r(t +to) — t0)) - (2.16)

It is generally true that eqn. 2.16 is implied for all group elements if it holds for the
infinitesimal element, 1 + 7, where 47 is infinitesimal. Thus we may differentiate eqn. 2.16

with respect to 7 and set 7 to unity to yield the so-called determining equation,

oW (1) = (1 + to)d”;t(t). (2.17)
Solving gives
W(t) =W [t joto] (2.18)



This result is analogous to that found for the length-scale of isotropic turbulence by Clark
and Zemach. Of course such a form is equivalent to

W(t) = vtv_g [t +to)”, (2.19)
and in the limit of tg — 0 we require that Wy — 0 so that the product Wotae 18 a nonzero
constant. This limiting case is the form which is generally used to analyze RM experimental
data.

Applying this approach to the energy spectrum, the turbulent kinetic energy, and
Reynolds stresses yields results that are identical to those found by Clark and Zhou [13]
for the case of the RT mixing layer (up to, but not including the determination of 9).
For a mixing layer that is statistically axisymmetric in (y, z) and inhomogeneous in x, the

self-similar energy spectrum can be represented by
Bl ki t) = KW F(06), (2.20)

where K (t) is given by eq. 2.6, W (t) is given by eq. 2.18. The similarity variables y and ¢

are
T
= 2.21
=Ty (2.21)
and

£ =k W(t). (2.22)

The turbulent kinetic energy at x in the mixing layer is given by
Ke,t)= [ Bl ko, )k = K(1) [ F(6dE = K1), (2.23)

For the case of anisotropic turbulence, the self-similar spectral tensor possesses the same

dimensionality as the energy tensor and consequently has an analogous form:;
Eij(x, ko, t) = KW () fij(x; ). (2.24)

This form permits variation in the anisotropy across the layer. Note that other possible
forms are not suggested by the analysis (see Clark and Zhou [13]). The Reynolds stress
tensor is therefore

o0

Rij(x,1) = 2/0°° B, ko, 1)dE = K(t)/o Fii(x, €)dE = K (1) Fy(y), (2.25)



which implies that for the self-similar inhomogeneous anisotropic mixing layer the anistropy
magnitude becomes independent of time. The anisotropy is a function of the similarity

variable, y alone,

bij(x,t) =

z, 1) N Frn (%) = Bi;(x)- (2.26)

The self-similar decay of the energy and growth of the RM mixing layer requires the de-

Rij(w,1) = 30;j Ron (2, 1) Fij(x) = 506 Fun(x)
(

viatoric parts of the Reynolds stress to decay at the same rate as the energy. This is also
consistent with the findings of Clark and Zemach [12]for homogeneous turbulence.

The problem remains to find #. In other words, is there a physical effect or parameter
governing the subsequent evolution of the layer, of which the invariance establishes the overall
dynamical evolution? For the RT mixing layer the physical constraint was the acceleration.
For isotropic decay, it is either the viscosity, or the permanence of the large scales. For the
present circumstance, requiring invariance of the viscosity yields § = 1/2, giving a mixing
layer that grows as the square-root of time like the simple diffusion layer. The alternative
is to ask what features of the flow field may be invariant during the evolution. Zhou’s
conjecture is consistent, at late times, with a limited form of the permanence of large eddies
at the center of the mixing layer;

lim B (e, by, 1) = lim K (OW (1) F(x, €) = K (D)W (1) Fol )€™ (2.27)

—0

This is a conjecture and assumes that the function F'(x,£) is separable, at least for small

values of £. Using eqn.s 2.18,2.22 and 2.6 this becomes

t t (3+n)f-2
+ 0] L (2.28)

KOW (DL = KW@ FOR" W (1) = KW Folx) |

For the choice of (3 4+ n)f —2 = 0 (which is identical to the conclusion found by Clark and

Zemach for decaying isotropic turbulence, eq. 2.12) we have
lim B, k1, t) = KoWg ™ Fo(y), (2.29)
%

which is constant in time. This is the circumstance alluded to by Zhou [4]. Zhou pointed out
that the admissible values for 2 < m < 4 give values of § that are in approximate agreement
with experimental estimations of the exponents governing the growth of the bubbles and

spikes of the RM mixing layer.
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C. Comparison of Richtmyer-Meshkov Growth rates and Decay Exponents

The above analysis produced a charaterization of the growth rate of an RM mixing layer
with two parameters—a time-exponent § and a virtual time-origin ¢5. The usual character-
ization for RM mixing layers is to have a virtual time-origin of ¢, = 0 and two different
time-exponents. In this section we will first address the relationship of the above-predicted
f and the two exponents reported in most experimental studies of RTM mixing. Secondly,
we will address the role of the virtual time-origin.

There exists a consensus in the community that the bubbles and spikes of the RM mixing
layer follow growth rates with different exponents as shown in eqn. 1.1. The present ansatz

is that the bubble and spike heights sum to give the width,
hs(t) + hs(t) = W), (2.30)

implying that both sides should possess the same power-law behavior

t+ 1o

0

Hto]e. (2.31)

]e,hs(t) :hgo[ -

his(t) = hao [

Self-similarity implies the correlations between fluid in the spikes at large separation
distances perpendicular to the inhomogeneous direction should scale with distance the same
as the correlations between bubbles at these distances. In other words, the same operative
forces (pressure, acceleration et cetera) affect the heavy fluid in the same manner as they
affect the light fluid. To do otherwise would require the fluctuations within the spikes be
correlated in a fashion that is independent of the lighter fluid that separates them. This
seems physically unreasonable at modest Atwood numbers, but indeed may be correct at
large Atwood numbers. However, if the spike and bubble correlations do scale similarly
at large separation distances, it implies that the bubble- and spike-growth should have the
same temporal power-law behavior. However, as stated above, empirical data are consistent
with the assumption that the power-law exponents are different.

The second issue is the existence of the virtual time origin, ¢y in the present theory. The
parameter ty arises due to the generality of the time-scaling. Had we not required time-
translation, we would not have produced solutions with the virtual origin. However, this
seems overly restrictive for a general theory. Note that if one makes the arbitrary assertion

that ty = 0 then the present theory requires that Wy = 0 so that the ratio Wo/tg = WO is
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constant. The existence of the virtual time origin is a consequence of the general theory but
makes the representation look unduly flexible. One may quite easily match experimental
data for various values of 4 if ¢y is allowed to vary. This issue was addressed by both Comte-
Bellot and Corrsin [7] and by Mohamed and LaRue [16] for the case of decaying isotropic
turbulence. The unfortunate conclusion is that it is dauntingly difficult to simultaneously
discern both the exponent and the virtual origin from either experiment or direct numerical
simulations. However, this difficulty does not necessariy warrant that ¢, = 0.

Following Zhou[4], assume that the dominant large-scale mixing length is proportional to
the turbulent length-scale. Specifically, both hp(?) and hg(t) scale in the same fashion as
the length-scale L(t) commonly discussed in the context of isotropic turbulence. Thus we

write for the bubble-side

- 6
t+1
ha(t) = hpo B] : (2.32)
| [t8]
and for the spike side,
- 6
t+1
hs(t) = hso | S] , (2.33)
| [ts]

where Wy = hpo 4+ hpo and the exponent f is related to n and hence m, by eqn.s 2.7 and
2.12, yielding

0= (1 - g) = mi—l—i’) (2.34)

The coefficients hgy and hgg are related to the scaling for the turbulence length scale by
dimensional considerations and by eqn. 2.34;

K%, K%,
h h 0 =0 . 2.35
Bo X Ntgg X n 2(1 _ 0) ( )

Here the coefficients, hgg and hgg set the amplitude of the mixing-layer scaling laws and are
unknown constants which may depend on Atwood number. The bubble and spike widths,
hp(t) and hs(t) grow in a fashion assumed to be analogous to L(t) and the Ag s The virtual
time origin, ¢ arising from time-translation invariance may be considered to be related to the
time required for the physical processes to equilibrate toward self-similarity. Such physical
effects may include the influence of Atwood numbers as well as the time required to achieve
a full spectrum of turbulent fluctuations in both fluids. Our assumption that 2 < m <4

implies that

~1 b
A
>
IA
NN



It is instructive to compare these bounds to reported values of 5. Alon, Hecht, Ofer, and
Shvarts [21] reported a value of 5 = 0.4, implying m = 2, as indicated by Zhou [4]. This
result is consistent with Saffman’s picture of large-scale energy deposition due to impulsive
forces. The equipartition of energy at largest scales (implied by Saffman’s &% infrared energy
spectra) and the so-called “permanence of big eddies” may also be a clue as to why the
evolution of the RM mixing layer appears to be strongly dependent on initial conditions.
More recently, Dimonte and Schneider [22, 24] and Schneider, Dimonte and Remington [23]
have reported values of g = 0.25 based on analysis of their experimental results. Likewise,
Oron, Arazi, Rikanati, Alon and Shvarts have reported g = 0.25 based on analysis and
simulation. Although, this value is slightly lower than our lower bound being 85 & 0.29, it

is close enough to be encouraging.

II1I. NUMERICAL TESTS

In this section we will apply the presumed self-similar forms to analyse an experiment
of RM mixing layers. The analyses will first study the role of the virtual time-origin by
determining the virtual origin that best fits the experimental data for a sequence of values
of §. This will be performed for fits to spikes and bubbles independently, and for the total
width of the mixing layer. The analyses will then study the effects of applying a single time
exponent to both sides of the layer.

Finding both the correct exponent, § and the correct virtual time origin, ¢, is a difficult

task. Our approach is as follows:
1. We discretize the #-interval bounded by (2/7,2/5).

2. For each discrete value of § on the interval, we perform least-mean-square fits to the
experimental data to determine the virtual origins (W, o) for a fit to the width and

(hgo,to) and (hso,to) for fits to bubbles and spikes.

3. We use the virtual origin data to determine the goodness of fit by computing the
L2-error of the fit for each of the three fits.

In order to fit negative values of the virtual time origin, we will use the formulation;
t+ to] ’
ol |

W) =W, [ (3.1)

13



We will fit the logarithm of this equations,e.g,,

Wo(t) = Ay (t + to) = Ast + Ao, (3.2)
where )
W?
A =2 (3.3)
2o
and
AO - Wo%é—0| - Alto. (34)
0

The least-mean-square fit are then made between the experimental data and the above form.
Analogous forms are used to fit the bubbles and spikes independently.

We will examine the experiment of Dimonte and Schneider[24] of impulsively-driven
Rayleigh-Taylor mixing layers. The set of experiments to be examined where conducted
at two different Atwood numbers (p2 — p1) / (p2 + p1), 0.22 (Experimental Set A) and 0.48
(Experimental Set B). Each set consisted of two independent shots. To augment the data
in the fits we constrain simultaneously to the shots within each Atwood number. This is
equivalent to treating the two independent shots as an ensemble, and applying the data-fit
to the ensemble.

Figures 1 and 2 show the values of #y and the L2 error of the fits of mixing layer width,
bubble height and spike height versus 6 for Experimental Set A and B, respectively. These
figures indicate that the circumstance of o = 0 (or equivalently, Ag = 0) do not coincide
with a minimum in the error of the fit. For Experimental Set A, shown in Figure 1, the
virtual time origin for the fit to the spike statistics never crosses zero for any choice of § on
the interval, and the bubble and width are zero for different values of #. In Experimental Set
B, Figure 2 the fits to width, bubble and spike result in three different virtual origins. This
suggests that the choice ¢ty = 0 is not warranted from this experimental data. The trend
appears to be that the smallest values of # seem to produce the least error in the fits. This
is in concordance with the values of 0 reported by Alon et al. [21], Dimonte and Schneider
[22, 24] and Schneider et al. [23].

Figure 3 displays the bubble and spike results for the Experimental Data Set A (At =
0.22) and fits to the data based on minimizing the L2 error for fitting the bubble data, fitting
the spike data and fitting the total width data. The results for the fit to the spike data gives

the best apparent agreement at early time, but the late time results for all three constraints
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look satisfactory. Figure 4 displays the fits to the width based on data from fits for the
bubbles, for the spikes and for the total width. Again, the early time data is best matched
by using the spike to determine the fit parameters (yielding § = 0.293andt, = —11.974), but
at late times all three constraints appear adequate.

Figures 5 and 6 display the results of the fits for Experimental Set B (At = 0.48). For
the higher Atwood number the best agreement at small times comes from the fits based on
the total width data (§ = 0.286,%7, = —8.569). Note that the late time agreement for all
three fits is again satsifactory.

Since the total width incorporates both the data for the spike-side and the bubble-side,
the fits based on the width data may be considered more “robust.” In addition, the best fits
based on the width data yielded the same exponents for both data sets, § = 2/7 which also
coincides most closely with results of Alon et al. [21], Dimonte and Schneider [22, 24] and
Schneider et al. [23]. The one difficult is that the present view of the RM layer does not
describe the partitioning of Wy into hge and hge which is presumably dependent on Atwood
number. This partitioning for the plots was accomplished by a separate fit to the bubble
and spike data based on the values of § and ¢y and then fitting only hpo and hso to the
experimental data. A more exhaustive examination of experimental data sets at a variety
of Atwood numbers would be necessary to determine a dependency of hpg, hso (or, more
likely, the ratios) and perhaps to on Atwood number. Tables I and II present the actual
values determined by the fits.

The theoretically suggested range of power-law scaling exponent of the RM induced
mixing layer agree reasonably well with the LEM experiments at Atwood numbers from
0.28 (density ratio about 1/2) and 0.48 (density ratio about 1/3). This once again supports
our assertion that the establishment of the self-similar scaling for the mixing layer widths
is dependent on the low wavenumber energy spectrum for a range of RM induced flows. In
these Dimonte and Schneider experiments, the effects of surface tension will affect the small
scales of the flow at late times. However, our present theoretical view indicates that it should
not have a significant impact on the scaling of mixing layer since the scaling of both spike-
side and bubble-side are assumed to depend on the large-scale property represented by the
low wavenumber power-law of the energy spectrum. It must be noted that other researchers
have also proposed mathematical forms that provide excellent fits to RM experiments. For

example, the empirical formula provided by Shvarts et al. [3] provides excellent fits to the
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Dimonte and Schneider experiments. One objective of our efforts is to suggest a theoretical
rationale for the range of observed exponents. Note also that in Zhou [4], the power-law
exponent of the scaling law for the bubble side, g, of the mixing layer was evaluated. On the
other hand, the analysis of the power-law exponent for the spike side was inferred from g
based on Alon et al. [21]. Our present theoretical picture gives a different, but self-consistent

view of this crucial aspect of scaling analysis.

IV. DISCUSSION

The experimental evidence cited in the previous section show that the late-time post-
shock evolution of the RM mixing layer is reasonable consistent with to the self-similar
behavior of the decay of weakly anisotropic turbulence. The initial post-shock phase of
the RM mixing layer may correspond to the early time behavior of anisotropic isotropic
turbulence wherein the energy is nearly conserved, and the necessary spatial and temporal
correlations are being established that will lead to the cascade of energy through an inertial
range and the subsequent asymptotic decay process. Once this inertial range is established,
the turbulent kinetic energy will tend toward a power-law decay in time, and the length-scale
will grow as a power-law in time, as observed in experiments.

The physical picture of the RMI induced flow, and it’s relationship to weakly anisotropic
turbulence at the late time, was established in Zhou (2001). Zhou only considered the basic
scaling for the bubbles and did not treat the scaling exponent of the spikes. Instead, the
result of Alon et al. [21] was noted. In this paper, we have proposed a theoretical framework
that provides the exponents for the scaling law for the spikes—it is the same exponent as
for the bubbles. This analysis is a speculative extension of the theoretical and experimental
turbulence work on isotropic and weakly anisotropic turbulence that has been conducted
over the last fifty years. The results of this turbulence-theory-based analysis are in good

agreement with the LEM experiments.

V. CONCLUSIONS

The analogy with weakly anisotropic decay suggests that the spike- and bubble-sides

should grow as power-laws with the same power-law exponents and virtual time origins. This
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view seems to be in reasonable agreement with experiment. At very late times, the analogy
with anisotropic turbulence suggests that the mixing layer will approach a “final stage
of decay” wherein the turbulence interactions are dominated by viscous effects—we do not
anticipate that RM experiments will achieve this regime due to the large times required (e.g.,
see Clark and Zemach[12]). The experiments of decaying isotropic and weakly anisotropic
turbulence have not been particularly successful at providing a definitive value for the decay-
law exponent. There are a variety of reasons for this, including finite experiment size and
finite Reynolds number effects (see Mohamed and LaRue[16], or Clark and Zemach[12]).
One remarkable aspect of Figures 3 through 6 is the similarity between curves at late times
following different power-laws.

It should be noted that the alternate view-that the two-sides of the layer decay with
different power laws in time is difficult to reconcile with the usual understanding of self-
similarity. It may be conjectured that such a state represents an intermediate asymptotic
approach to partial self-similiarity that is eventually subsumed by the overall self-similarity
at late times. Unfortunately the inherent physical difficulties involved in performing such
experiments makes it impossible to assess if this is the case.

It should be noted that consistency with the results of the self-similar analysis is not proof
that the analysis is correct. Indeed, it is expected that at high Atwood numbers the balance
of physical processes and forces in the heavy fluid may be substantially different than those
in the lighter fluid, and the fundamental assumption of self-similarity will be highly suspect.
However, for the modest Atwood numbers tested the analysis yielded excellent agreement
with experiment, and thus warrants consideration as a model of the late stages of the flow.

The empirical formula developed in [3] gives very good agreement with the LEM experi-
ment data sets [22-24]. The results demonstrate that scaling laws can also be obtained from
basic turbulence theory and are in satisfactory agreement with the LEM measurements,
thus perhaps providing a more complete picture of the physical processes underlying the
empirical formula in [3]. The apparent disparity of agreement at early time may indicate
that the turbulence has not yet condensed to an asymptotic self-similar state.

It is perhaps unreasonable to expect that the more difficult experiments of Richtmyer-
Meshkov mixing layers should be any more successful at identifying power-law exponents
then the simpler isotropic experiments. Nevertheless, the experiments appear to bound the

power-law behaviors, and these bounds are in good agreement with the bounds presented
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here based on the large-scale (small wavenumber) scaling of isotropic turbulence.
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FIG. 1: Virtual time-origins and errors in fits for bubbles, spikes and widths as a function of the

exponent, 8, for experiments 60627-02 and 60627-04, combined. Atwood Number = 0.22.
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FIG. 2: Virtual time-origins and errors in fits for bubbles, spikes and widths as a function of the

exponent, 8, for experiments 60627-09 and 60627-10, combined. Atwood Number = 0.48.
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TABLE I: Values of 6 that yield minimum errors for bubble fits, spike fits and width fits for
Impulsive Rayleigh-Taylor Experiments 60627-02 and 60627-04. Data for best fits for bubble,
spike and width data for each € are included. Atwood Number = 0.22.

Fit 0 hpo X 101 g heo X100ty hyo x 100 iy

Bubble 0.4659 2.259  7.278  2.245 —3.272 1.692  0.5729

Smke 0.2933 2.635 —-2.974 5575 —1.197 8.762 —8.903

Width 0.2857 2.8175 —3.457 5.697 —12.37 9.018 —9.3385

TABLE II: Values of # that yield minimum errors for bubble fits, spike fits and width fits for
Impulsive Rayleigh-Taylor Experiments 60627-08 and 60627-10. Data for best fits for bubble,
spike and width data for each € are included. Atwood Number = 0.48.

Fit 0 hpo X101t Ry x 100ty hg X 101ty

Bubble 0.2857 11.687 —10.847 9.914 —5.968 21.915 —8.569

Spke 0.2857 11.687 —10.847 9.914 —-5.968 21.915 —8.569

Width 0.2857 11.687 —10.847 9.914 —-5.968 21.915 —8.569
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